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Abstract

Due to their inherent dissipation and stability, the MacCormack scheme and its variants

have been widely used in the computation of unsteady flow and acoustic problems.

However, these schemes require many points per wavelength in order to propagate waves

with a reasonable amount of accuracy. In this work, the linear wave propagation

characteristics of MacCormack-type schemes are shown by solving several of the CAA

Benchmark Problems.

Introduction

In the field of computational aeroacoustics, numerical schemes are expected to propagate

waves accurately for long distances over long periods of time. In order to accomplish this

goal, a certain number of spatial points are required per wavelength to model each wave,

and a certain time step is required in order to model the wave's movement in time. It is

desirable from a computational standpoint to reduce the number of points required per

wavelength and increase the size of the allowable time step.

One popular and well-tested method uses a modification of the MacCormack scheme l,

which is second order accurate in time and fourth order accurate in space. This extension

of the MacCormack scheme is known as the 2-4 scheme, and was described by Gottlieb

and Turkel. 2 This scheme has been used successfully on a wide range of fluid and



aeroacoustics problems. 3-15 Sankar, Reddy, and Hariharan have evaluated this scheme for

aeroacoustics applications. 16 It has been extended to sixth- order spatial accuracy by

Bayliss, et. al. (2-6 scheme) 17, and an extension of the 2-4 scheme to fourth-order time

accuracy is described by Viswanathan and Sankar. 18

Building on this previous work, a new high-accuracy MacCormack-type scheme has been

developed for use in computational aeroacoustics. 19 This scheme has been successfully

applied to the real-world problem of supersonic jet noise prediction. 2° In this paper, the

performance of this scheme will be evaluated using the benchmark problems of the fh'st

and second CAA workshops. The results are used to quantify the performance of the

various schemes.

Numerical Formulation

In this work, four previously existing MacCormack-type schemes will be used: the

classical MacCormack scheme, the 2-4 scheme of Gottlieb and Turkel, the 2-6 scheme of

Bayliss, et. al., and the 4-4 scheme described by Viswanathan and Sankar.

In addition to these schemes, the high-accuracy MacCormack-type scheme of Hixon will

be used. This scheme utilizes the Dispersion Relation Preserving methodology of Tam

and Webb 21 for the spatial discretization and the 4-6 Low-Dispersion and -Dissipation

Runge-Kutta scheme of Hu, et. al. 22 for the time integration. It is formally fourth-order

accurate in time and space for linear problems.

The time marching method used by these MacCormack-type schemes can be written as

follows:

=6k

_(3) = _k + a3AtF((2(2)]
k !
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(1)

where the values of the coefficients are given in Table 1. Notice that the 4-6 time marching

method alternately uses four and six stages to move to the next time level. Each spatial

derivative uses biased differencing, either forward or backward, providing inherent

dissipation for the solver.

Using a spatial derivative at point j as an example,

Forward:

/a,a,_,+a0a; ]k-- +a2 ,+2
_ +a3Qi+3

(2)

Backward:

_r li = -11 a3(_i-3 + a2_i-21k
--_l+al(2i-l + ao(2i l

t+a-_6_+_ )

(3)

The sweep directions are reversed between each stage of the time marching scheme to

avoid biasing, and the first sweep direction in each time step is alternated as well. This

gives a four-step time marching cycle (using the 4-6 time marching method to illustrate):

3



2ndorder 4thorder Hu 4-6Step1 Hu4-6 Step2

a2 1 1/2 1/2 0.353323

or3 0 1/2 1/2 0.999597

ota 0 1 1 0.152188

a5 0 0 0 0.534216

ot_ 0 0 0 0.603907

_11 1/2 1/6 1/6 0.0467621

I]2 1/2 1/3 1/3 0.137286

_3 0 1/3 1/3 0.170975

_4 0 1/6 1/6 0.197572

1_5 0 0 0 0.282263

[_6 0 0 0 0.165142

Table I: Coefficients for Runge-Kutta Time Stepping Schemes.
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Table II: Coefficients for MacCormack-Type Schemes
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Qk +l = LSFoFQk

Qk+2 = LFeFBmQk+I

ok+3 = LFBFBQk+2

Qk+4 = LBFBFBFQk+3

(4)

At the computational boundaries, flux quantifies outside the boundaries are needed to

compute the spatial derivatives; these fluxes are determined using third-order extrapolation

from the interior nodes.

Benchmark Problems

These schemes are compared using linear benchmark problems from the ftrst 23 and second

CAA Workshops.

1) One Dimensional Problems

Problem 1 of the first workshop requests the solution at t = 400 of:

ut + Ux = 0 (5)

where

u,0,  ox0in,+:;1
-20 < x _<450

,Sx = 1.0

(6)

Problem 2 of the first workshop requests the solution at t = 400 of:

U
Ut+Ur+--=O

r
(7)

where



u(r,o)=o

u(5,t) = sin( cot)

oJ- 3'4'6 (8)

5 < r < 450

Ar= 1.0

These problems test the ability of the scheme to accurately propagate linear waves of

varying wavelengths for long distances of travel.

2) Two Dimensional Problems

The problems given for the second CAA Workshop are much more difficult. In this

problem set, a 2-D circular cylinder of radius 0.5 is placed at the origin, and acoustic waves

reflect and scatter from this curved surface. The governing equations are the two-

dimensional linearized Euler equations in polar coordinates:

vs, _ 1/ /' 1 _ =S (9)
+ +7 , +--v' rt J, t rJ,. v,

For Problem 1, S is a simple harmonic source at r = 4, 0 = 0, given by:

---

0

0

expl-ln(2) (x-4)2 + y21sin(81_t)(0.2)2

The problem requests rp 2 in the limit as r -> oo in the arc 180 > 0 > 90.

In Problem 2, S is an initial disturbance at time t = 0, given by:

(10)
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sit=0 =

0

0

expC_ln(2) (x _4)2(__)2+y2

(11)

For this problem, the pressure time history from 6 < t < 10 at three points is requested.

These points are at 0 = 90 ° (point A), 0 = 135 ° (point B), and 0 = 180 ° (point C) at a

radial distance of 5 from the origin.

Boundary Conditions for Two-Dimensional Problems

There are three boundary conditions which are used.

Thompson solid wall boundary condition is used, and the equations become:

,.., fit1I°t+v. +r O,=Slv;'It 'O-P'J. +1 " o tv'J

At the cylinder surface (r = 0.5), the

(12)

In this computation, three ghost points are used inside the surface for the radial derivative;

their values are set as:

tvo, =
[ P'J _j l P' Jl+j

(13)

In the far field (r = Rmax), the acoustic radiation condition is used:

,tvt+-- 0 =Siv°'t+i°t 2r

[P'Jt lP'J. P'

(14)

For the radial derivative at the outer boundary, three ghost points are used. The values of

the variables at these ghost points are determined using third-order extrapolation from the

interior values.



At thesymmetryplanes(0 = 0 and 0 = _), a symmetryconditionis used.

aroundi -- 1:

P' J__; I P' it+,

For example,

(15)

where i is the index in the azimuthal direction.

Computational Grid for Two-Dimensional Problems

For Problem 1, a 801 (radial) x 501 (azimuthal) grid was used, covering a domain of 0.5 <

r < 20.5 in the radial direction, and 0 < 0 < r_. Since the wavelength of the disturbance is

0.25, this grid results in 7-10 points per wavelength. The exact results were given at the r =

15 line, giving a maximum of 76 wavelengths of travel at 0 = r_.

For Problem 2, a 201 (radial) x 301 (azimuthal) grid was used, covering a domain of 0.5 <

r < 10.5 in the radial direction, and 0 < 0 < ft. Since the transient problem only requires

data from 6 < t < 10, the outer radial boundary only has to be far enough away such that no

reflections can reach any of the three data points during this time period.

Results

1) One Dimensional Results

The solutions of Benchmark Problem 1 at t = 400 as calculated by the various schemes are

shown in Figures 1-5. In this problem, a Gaussian pulse propagates in time and space for

a given time, at which point the results are compared. On each figure, the solution is

shown for various time steps to illustrate the effect of the time step on the accuracy of the

time integration.

Figure 1 shows the solution obtained using the classical MacCormack scheme. Two

points are evident: first, the classical scheme is a perfect propagator at a CFL number of



1.0; second, the scheme is very dissipative and dispersive for other time steps. Since

perfectly uniform grids are unusual in real-world problems, the perfect propagation is not

overly useful.

Figure 2 shows the solution obtained using the 2-4 scheme of Gottlieb and Turkel with

time steps of 0.25, 0.4, and 0.5. The dissipative nature of the scheme is evident, and the

time step has a large effect on the dispersion error.

Figure 3 shows the solution obtained by the 2-6 method of Bayliss, et. al. Again, the

solution shows dissipation and dispersion, with higher dispersion errors than the 2-4

scheme.

Figure 4 shows the solution obtained by the 4-4 method described by Viswanathan and

Sankar. The effect of the increased time accuracy on the dispersion error is immediately

apparent. Another point of interest is that the four-stage, fourth-order Runge-Kutta scheme

is dissipative at larger time steps.

Figure 5 shows the same time-stepping scheme using the optimized DRP spatial

differencing. The solution obtained is very accurate and is also insensitive to the time step

chosen.

Figures 6-8 compare the results of the 2-4 scheme to those of the optimized DRP scheme

for Benchmark Problem 2. In this problem, a single-frequency spherical wave propagates

outward from an impulsively-started vibrating sphere. As given, the problem has two

parts: the In'st has 8 points per wavelength, and the second has six points per wavelength.

To give the 2-4 scheme some chance of obtaining reasonable results, a third part was added

which has 12 points per wavelength.

Figure 6 shows the results for 12 points per wavelength at 33.33 wavelengths of travel.

The solution given by 2-4 scheme shows dissipation error and some dispersion error,
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while the solutiongiven by theoptimizedDRP schemeshowsvery little dispersionor

dissipationerror,evenwitha timestepfive timeslargerthanthattakenbythe2-4scheme.

Figure7 showstheresultsfor 8 points perwavelengthat 50 wavelengthsof travel. The

solutiongivenby the2-4schemeisvery dissipatedandshowssomedispersionerror. The

solutiongiven by the optimizedDRP schemeshows some dispersionand dissipation

error,but is still verygood.

Figure 8 shows the resultsfor 6 points per wavelengthat 66.67 wavelengthsof travel.

Exceptfor the initial transient,thewavehasbeencompletelydampedby the2-4 scheme,

while theoptimizedDRP schemeis still showinggoodaccuracyin dispersion. However

thewavehasdissipatedto approximately65%of theexactvalue.

2) Two Dimensional Results

Results for Problem 1 of the second CAA Workshop are given in Figure 9. In order to

avoid problems with the very large initial transient, a polynomial function was used to

smoothly increase the amplitude of the forcing function. The time step used was limited

by the stability of the solid wall boundary; for these calculations a time step of At =

0.00245 was used (CFL = 0.786). The calculation was run to a time of 32.09, with results

being taken from 31.59 < t < 32.09. This calculation took a total of 6.27 hours of CPU

time on a Cray Y/MP, running at 191 Mflops. The results are given at r = 15 D, and

compare very well with the exact solution.

Results for Problem 2 are given in Figures 10-12. The results agree very well with the

exact solution. This calculation, using a At of 0.0025 in order to print out the required

results, took a total of 469 CPU seconds on a Cray Y/MP, running at 175.5 Mflops.

However, the code could run stably at a CFL number of 0.864 (At = 0.0045), requiring
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261CPUseconds.With morestablesolidwail boundaryconditions,it is expectedthat the

schemecanrecovertheCFL= 1.4time stepthathasbeenseenpreviously.

Gridrefinementstudieswereconductedfor Problem2; theeffectof halvinganddoubling

thegrid areshownfor PointC in Figures13and 14. PointC waschosenbecauseit was

themostdistantpointfrom theinitial locationof thepulse. In Figure 13, threecomputed

resultsareshown: ahalf grid (101 x 151),thegrid used(201x 301),anda doubledgrid

(401 x 601). Thetwo densergrids havenearlyidenticalresults,and comparevery well

with theexactsolution. The coarsestgrid, however,shows leadingand trailing waves,

sometravelingmuchfasterthanthephysicalwave.Thisis dueto thelow resolutionof the

grid causingthesolverto incorrectlyallow high-frequencywavesto travel fasterthanthe

speedof sound.

Figure14showsthetransientpeakatpoint C. Theeffectof increasedgrid is illustratedin

this graph; thetransientpeakbecomescloserandcloserto theexactsolutionas the grid

becomesdenser. At this extremeamplification,it can be seenthat the transientpeak

velocityis very slightly off with the grid used,but the answeris well within expected

tolerancesfor thiscase.

Conclusions

In this work, the dispersive and dissipative characteristics of a new high-accuracy

MacCormack-type scheme were investigated using benchmark problems of the first and

second CAA workshops. The results show that this new scheme is very promising for

computational aeroacoustics applications, requiring only 6-8 points per wavelength and

allowing large time steps.
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TheMacCormack-typeschemesareof greatinterestdueto their easeof programmingand

use,andinherentnumericaldissipation.Thiswork showsthatthis typeof schemecanbe

optimizedto performverywell.
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Figure 1.--Solution of Benchmark Problem 1 of the First CAA
Workshop using Classical MacCormack Scheme.
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